Portable Emissions Measurement Strategy

On-Vehicle Measurement Strategy

U.S. EPA Office of Transportation Air Quality October 21, 2002

PEMS On-Vehicle Investigate Feasibility.... Certification? Establish Test Protocol On-Vehicle Compliance Model Inventory -Duty Cycles On-Vehicle Emissions Data -Emissions -Activity -Population

PEMS Foundation: Significant Data Collection

- Design Requirements
 - Simple installation
 - » Wide variety of vehicles
 - Unattended operation
 - » Weather & tamper-proof
 - » Low power consumption
 - » Remote communication
 - Proportional emissions data
 - » Fast-response sensors
 - » Stand-alone flow measurement
 - » Ambient conditions
 - » Engine speed, temperatures, etc.

Emissions Calculations

/Linear Calibration

PEMS Uses:

- On-Highway Sources
 - Emission factor / source apportionment
 - HD in-use compliance
- Nonroad Sources
 - Most engines/vehicles (> 25 Hp)
 - Activity information as well as in-use compliance

EPA's History on Developing On-Vehicle Systems

- EPA investigated and developed on-highway applications (i.e. ROVER)
- Continued development for on-highway heavy-duty applications through the HD Consent Decree (i.e. work done by WVU on MEMS)
- EPA continued development work for non-road applications (i.e. SPOT)

Technology Development

Goals

- Bring technology to market
- Make accurate, accepted equipment readily available
- Specify EPA needs so manufacturers can respond
- Approach
 - Cooperative Research and Development Agreements
 - » Measure gasoline and diesel emissions
 - » Operate unattended for extended periods of time
 - » Accuracy requirements approach lab measurement
 - » Goal is to have commercially available products in ~6 months
 - OTAQ lab and contractor development
 - » PM and toxics measurement capability
 - » Measurement strategy development

2001-2002 Modeling Approach

- Modeling Sec-by-Sec Proof-in-Concept Tests
 - Tested 15 Diesel Buses from AATA w/ Sensor's SEMTECH-D (older version)
 - Tested 15 LDVs and LDTs w/ Sensor's SEMTECH-G (older version)
 - Modelers using data to develop a model based on sec-by-sec in-use data.
 - Gathering sec-by-sec data from other test programs.

Real World Bus Emissions

Emissions Where They Occur

Second-by-Second LDVs Cold Start Data

Real World vs Lab

Bars show I

2001-2002 Non-road Progress

- Constructed seven SPOT systems
 - <u>Simple Portable On-vehicle Test system</u>
 - NO_x, O₂, Exhaust Flow, temperatures, pressures, humidity, engine speed
 - 1Hz data collection; 1-week unattended
- Initiated fifty 1-week non-road vehicle tests:
 - Primary purpose to challenge SPOT & develop procedures for non-road data collection
 - 100% complete
 - ~50% of collected data has been processed (QA/QC)

Measuring Emissions in the Field

CAT Dozer D8RCAT Scrapper 627B

Non-road Exhaust Flow Device

Flow Device Version 3

Experience Executing Test Plan

- Unexpectedly positive level of volunteerism from owners
 - Data will help EPA set reality-based regulations
 - Testing would never impede productivity
- Logistics challenges
 - Who to contact: start at the top
 - Locating vehicles & tracking vehicle movement
- Field installation challenges
 - Environment: snow, rain, frost, darkness
 - Safety: lifting 80-lb SPOT, speed sensor calibration with tachometer

Conclusions (so far...)

Non-road effort is already yielding very valuable information

- Equipment evaluation & test execution

Results might support a simple, effective compliance protocol for non-road

2002-2003 PEMS Plans

- Acquire four commercially available systems to measure all gaseous regulated pollutants
 - CO, CO₂, NO_x, HC
 - For gasoline and diesel (2 each)
- Develop on-vehicle PM <u>mass</u> measurement instruments
 - EPA lab research with TEOM, PDM, & QCM
 - » Includes proportional, partial-flow sampling research
 - SwRI investigation of TEOM and QCM
 - » sampling from CVS

ON-ROAD, IN-USE DIESEL VEHICLE EMISSIONS ANALYZER

SEMTECH-D

SEMTECH-D (DIESEL VEHICLE ANALYZER) **Technologies employed:** Heated FID (200°C) **HC: CO:** NDIR $(35^{\circ}C)$ **CO₂:** NDIR $(35^{\circ}C)$ **NO:** NDUV $(60^{\circ}C)$ **NO2:** NDUV $(60^{\circ}C)$ ■CPU: Pentium MMX ■ Vehicle ECM Interface(s) Wireless Communications ■ GPS

2002-2003 PEMS Plans

- Evaluate systems against engine dyno, chassis dyno and in-use operations (gasoline & diesel)
 - Accuracy
 - Durability
 - Sensivities/Interferences
- Develop procedures and methodologies including QA/QC for PEMS use.
 - EPA funded test programs
 - Work w/ PEMS manufacturers
 - Work w/ industry (vehicle & engine)

2003-2004 PEMS Plans

- Kansas City PM Test Program
 - To determine the % of the LDV population that are high emitters.
 - Use PEMS/PAMS to gather in-use information.
 - Use continuous mass PM measurements based on tests conducted in Winter '02/Spring '03
- Develop methodologies and sampling procedures to get accurate nonroad population and activity data.

Desired Results from On-Vehicle Measurements

Robust emissions inventory
Effective compliance protocol
Investigate feasibility of on-vehicle certification